[최종필]10년간 수학메타변화+도구정리메타에 대한 생각
안녕하세요.
오르비 클래스 수학강사 최종필 입니다.
책장을 정리를 하던 중 예전에 들었던 인강 교재들을 발견하였습니다.
혼자 박혀서 있는걸 좋아하는 성격이라 고1때 부터 오르비에 가입하고 정보들을 모아 시중에 있는 인강을 거의 다 들었습니다.
제가 들었던 분들은 지금 거의 다 은퇴를 하셨지만, 아직 사이트내 1타를 하고 계신 분도 계시고 강의 제목과 교재 표지조차 바뀌지 않고 있는 것을 보니 학생들이 아직도 많이 찾는 강의인 것 같습니다.
별건 아니고 예전에 경험 (수리영역10~13)과 + 눈팅 (수학영역14~20)을 근거로 분석, 그리고 지금 메타에 대한 생각들 까지 말씀 드리려고 합니다.
이게 기억에 의존하다보니 정보들이 파편적으로 남아있습니다. 그래서 그 키워드 중심으로 말씀 드리겠습니다.
당연히 팩트가 아닐 수 있으니 가볍게 읽어 주시면 감사하겠습니다 :)
+수정사항, 추가사항도 말씀해 주시면 바로 반영하겠습니다.ㅎㅎ
[10-13] #수리영역 #현학적 #기출분석 #노량진
#수리영역
이땐 국영수가 아닌, 언수외였습니다.
언어, 수리, 외국어 영역으로 불리었고 (굉장히 생소하네요..ㅎㅎ) 탐구도 4개, 3개[13년] 과목을 선택하였습니다.
이때 수리영역은 수학과 다르다. 우리는 수학이 아닌 수리영역을 공부해야 한다. 이런 워딩이 생각이 납니다.
(저는 그냥 이름차이라고 생각합니다.)
#노량진
학원가는 노량진과 대치동 중심으로 형성이 되어있었고, 인강 1타 선생님의 노량진 수강료는 4주*4시간 기준 10만원 초반 이였던 걸로 기억합니다.
#현학적
이시기에는 이런 풀이들이 유행하였습니다. 10초풀이, 계산하지 않고 풀기, 극한 근사해서 관찰하기, 3줄안에 풀기, 스티커문제 1분컷 즉 풀이 과정을 굉장히 단순하게 하여 처음에 학생들을 지리게(?) 만들었습니다. 굉장히 신선하게 들렸고 처음에 학생들을 모으는데 성공 하였습니다.
하지만, 시간이 지난 후, 학생들의 평가는 달라졌습니다. 실전적이지 못하다. 현학적이다. 내가 그 생각을 어떻게 하느냐 등등... 시험장에서 아얘 써먹지 못한 학생들은 등을 돌리기 시작하였고, 예전에 자랑스런 풀이들은 부끄러운 풀이로 바뀌게 됩니다.
#기출분석
기출분석은 언제나 중요합니다. 당연히 지금도 강조되고 있습니다. 하지만 이때 기출문제의 위상은 차원이 달랐습니다.거의 성경 수준으로 평가가 되어있었으며, 기출문제를 아낀다라는 말도 있었습니다. 즉, 좋은 문제를 함부러 풀 수 없으니, 아끼고 아껴서 다음에 실력이 올랐을 때 영접한다는.. 그런 말들도 있었고, 당연히 기출문제만 잘 하면 만점을 받는다는 것은 정설이였습니다. (의견차이가 없었던 걸로 기억합니다)
그리고 지금과는 달리 풀 수 있는 문제가 적어 이런 경향이 더 컷던 것 같습니다.
[14-16] #실모전성시대 #A형,B형
#실모전성시대
13년도부터 실모시장은 활성화 되기 시작하였습니다. 포만한 카페나 오르비 내에서 주말저녁 마다 온라인 실모 행사가 열렸으며, 상품도 있었습니다. 참가인원은 한 회당 약 100명정도로 굉장히 인기가 많았고, 답안을 인터넷으로 바로 작성하기 때문에, 결과도 바로 나와 허언친구를 거를 수 도 있었습니다. 이 실모 시장을 연 모의고사는 12년에 발간 된 '포카칩 모의고사'라는 실모입니다. 포카칩모의고사가 나오기 전에는 실전대비를 각종 사설모의고사, ebs 파이널, 인강강사 파이널로 밖에 할 수 없는 상황이였고, 이런 암울한 상황에 포카칩 모의고사는 한줄기 빛이였습니다. (저도 풀었었습니다.ㅎㅎ) 그 이후 실모는 쏟아져 나왔고, 컨텐츠 대 홍수의 시대가 열렸습니다.
#A형,B형
가형 나형 대신 A형 B형으로 바뀌었고, 탐구 선택 갯수 두개는 고정이 되었습니다.
[17-20] #N제+실모 #실모중독 #실전개념,도구정리메타
#N제+실모
이게.. 칼로 자르듯이 딱딱 시작 되었다고 할 수는 없습니다. 그래도 경향상 이제부터 퀄리티 좋은 N제가 시중에 나오기 시작하였고, 인강커리도 고정됩니다.
기본개념 > 실전개념 > N제, 실모
N제의 퀄이 좋다보니, 기출문제의 위상이 떨어지기 시작합니다. 물론 중요하지 않다고 하시는 분은 아무도 없습니다. 하지만, 예전처첨 아껴서 푼다거나, 기출을 분석하고 씹어먹는 경향이 많이 사라졌습니다. 그냥 인강에서 분석한 내용, 실전개념을 적용하는 수단이거나, 사설N제와 기출문제의 무거움을 같게 보는 경향도 있는 것 같습니다.
또한 기출문제 만으로 좋은 점수를 받기 힘들다는 생각들이 퍼져있습니다.
오르비 어떤글에서 투표를 한 것을 봤는데, 반 이상의 학생들이 기출문제만로는 힘들다고 생각하는 것 같습니다.
#실모중독
https://orbi.kr/00023890499/%5B%EC%B5%9C%EC%A2%85%ED%95%84%5D%EC%88%98%ED%95%99-N%EC%A0%9C%EC%99%80-%EC%8B%A4%EB%AA%A8%EA%B0%80-%EC%9E%AC%EB%B0%8C%EB%8A%94-%EC%9D%B4%EC%9C%A0?q=%EC%B5%9C%EC%A2%85%ED%95%84&type=keyword
예전에 썼던 글입니다.
+제 생각
당연히, 기출문제와 N제의 무거움은 다릅니다. 기출문제가 훨신 중요하며, 강조되어야 합니다. 기출문제에서 반복되는 생각들이 계속 반복되며, 기출문제에서 그 생각들을 익히는 연습을 하셔야 합니다. N제와 실모는 적용 연습입니다. 기출에서 배웠던 생각들, 개념들을 새로운 문제에 적용하는 연습을 하셔야 합니다. 당연히 기출만으로는 부족합니다. 왜냐하면 수능은 새로운 문제가 나오기 때문이고 생소함이라는 심리적 변수에도 적응이 필요하기 때문입니다. 계속 강조하지만, N제와 실모의 목적을 잘 이해하시고 자신에게 맞는 수단으로 사용하시면 정말 큰 도움이 되실 겁니다.
#실전개념,도구정리메타
이제 실전개념, 도구정리 라는 말이 나오기 시작합니다. 제가 강의를 직접 들은게 아니라, 감히 평가 할 수 는 없지만, 학생분들의 얘기를 들어보면 이런 것 같습니다.
교과서 기본개념+기출문제를 분석하여, 자주 나오는 조건들을 정리+따름정리
분명히 도움이 됩니다. 수능에서 자주 출제 되는 유형, 조건들을 정리하는 것은 매우 바람직 합니다. 왜냐하면 그런 문제들은 빨리, 정확히 푸는 것 이 핵심이기 때문입니다.
그리고 이런 개념들을 듣고, 뒤에 기출되었던 문제를 풀면 아주 잘 풀립니다.
즉, 나온 문제는 적용이 됩니다. 왜냐하면 그 문제를 보고 만든 개념이기 때문입니다.
+제 생각
1. 나올 개념인지 나온 개념인지
예를들면 18년도 수능 가형 이차곡선문제에서 이차곡선의 중요한 성질 : 대칭성 - 축위에 점이 있으면 대칭성을 파악하라! 이런 생각을 먼저 주입 시킨 후 이 문제를 접근하면 굉장히 쉽게 풀립니다. 하지만 정답률은 킬러문제 다음으로 어려웠습니다. 틀린 생각은 아니지만, 이 생각을 출제되기 전부터 강조했는지, 아니면 출제된 후에 만든 개념인지 아셔야 합니다. (특정책, 강의 저격 절대 아닙니다.)
2. 시행착오는 없는것이 좋은 것
당연합니다. 시행착오는 없는 것이 좋습니다. 그리고 이런 개념들로 문제를 해결하다보면 평소에 시행착오를 겪을 환경이 안주어 집니다. 그 문제를 풀기 위한 개념이기 때문입니다. 하지만 평소에 시행착오를 겪지 않았지만, 수능날 익숙하지 않은 문제로 인해 시행착오를 겪게 될 상황이 된다면, 익숙하지 않아 문제를 풀지 못하게 됩니다.
3. 그럼에도 불구하고 문제풀때 시행착오는 당연한 것
처음보는 문제를 보면 시행착오를 겪는 것은 당연한 겁니다. 시행착오라는것이 실수가 아니라, 발견적으로 해보는 것, 상황을 축소해 보는것, 나열을 하는 것 이런 것들을 포함합니다. 이런 행동으로 인해 문제의 핵심 발상을 떠올리는 것이 훨신 수월해 집니다. 즉, 부딪히고 생각하셔야 합니다.
요약하자면, 도구정리, 실전개념 정리는 좋지만, 너무 의존하지 않으셨으면 좋겠습니다 :) (저도 도구정리 합니다)
이제 100일이 깨졌는데, 재수생 분들은 아시겠지만, 100일 이라는 시간 정말 깁니다.
후회없는 수험생활 보내시길 바랍니다
감사합니다.
최종필 올림.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
방금 질문글 올렸는데 사탐98보다 과탐89가 더 어렵다네여 진짜 존경해요 전...
-
25학번선에서 해결할 가능성 더 높지않음? 4500vs 잠재적 20만 인데...
-
물론 성취 기준 복붙인 건 알지만... 12 원핵 vs 진핵 비교요? (샤가프...
-
학원 안 다니고 있고 혼자 공부 중인데 모평 보려면 출신 고등학교 아니면 모평...
-
카카오톡 팀채팅 24
릴레이소설 기능 재밌네요
-
수학에서 연산은 잘하는데 응용으로 못 넘어가겠어요.. (기초 예제도 자꾸 틀림...
-
지금 듣는 국어 강사 12
적어주세요
-
금번 원광대학교 의과대학 불인증은 증원평가와 무관한 정기평가의 결과입니다. 불인증...
-
예전에 민주당에서 박근혜 가짜뉴스 퍼트릴때 박근혜가 청화대에서 굿을한다,마약x스를...
-
지수 단독 문제일까 지수 로그 역함수 문제일까
-
이맘때쯤이면 항상 나오는 주제인듯 학점은행제로 둘다 자격충족가능한데 솔직히 바로...
-
난이도 둘이 비슷한가요..?
-
치한약수 서연고 붙어놓고 다 반수할듯한데...이러면 08들이 진짜 지옥일듯
-
모든 감정, 정서 등을 논리로 분석하는겁니다
-
내 역랑이 딸릴 듯
-
과외 5
입학 전에 쌩노베 학생 좀 가르치고 싶다 혼자 공부할 수 있게 만들어주고 싶다...
-
천문학적 액수 퍼주면서 주한미군을 붙잡아야 할까? 26
밸런스 게임. ‘미국에 방위비 분담금 5배 정도 올려주기 VS 주한미군 대폭 감축...
-
행정학과가서 외시준비하는사람은 나밖에없겟지..
-
개정은 원순열이 안 들어가서 따로 공부해야 한다는 거 같던데 분량 많거나 난이도...
-
고3 정시 고민 1
생명과학과 희망하는 고3 학생인데 원래 다 이과 과목이였다가 공부량이 너무 많아져서...
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] 0
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
잘 돌아서 안 하려고 했는데 또 들어오게 되네
-
부탁이 아니라 강요입니다
-
등급컷은 상관없고 만점표점이 궁금한 ChillGuy일 때 저번 칼럼에서 2등급 이하...
-
안녕하세요 오르비by매시브 수학강사 이대은입니다. 벌써 2025년이 되고 이주일이나...
-
한석원 알파텤 다음 기출로 넘어가도 무관??
-
고심리 썼었다면 붙었나요?
-
예비고3들한테 취업걱정 ㅈㄴ받노
-
성대 공학계열 1
최종컷 몇으로 보시나요...? 아직 점공 50퍼도 못 넘었던데 ㅠㅠ
-
아니 진짜 과외 4
어케하죠... 과목은 수학입니다. 가르쳐야 하는 애는 그냥 노베고요. 현재...
-
누가 만든건지 참 ㅋㅋ
-
정시일반 만큼이라도 살려줘라 우리는 거의 정석대로 온거잖아 우리만 빼고 좀 해
-
번아웃 와서 학교도 자퇴하고 2년동안 시간 날리다 이제는 고3돼서 공부 해야하는데...
-
밑줄 친 부분 구하는 방법 알려주세요.. 전개를 이용해서요
-
ㄷㄷ조심해야지
-
그 전에 원서 접수한 애들은 구제해줄텐데 버리고 온 한의대.. 수의대.. 공대.. 아른거린다
-
공군 7월 13
컷 100점? 101점? 얼마일까요
-
양자정보공학 입결 어디까지 박을까
-
가만히 앉아서 피해자 됨 걍 수험생활하고 의대왔는데 왜 불이익을 받아야 하는 건지...
-
적폐전형 0
기균 저소득 썼는데 이건 적폐가 맞는 것 같다.. 돈 많이 벌면 사회에 돌려놔야지
-
삼수 고민 5
평균4등급 따리인데 6월부터 시작하면 인서울 들어가긴 힘들겠다는 생각이 들어서요.....
-
美당국, '불법 선거요원' 혐의 중국인 체포…中 "상황 몰라" 1
[베이징=뉴시스]박정규 특파원 = 미국 당국이 2년 전 캘리포니아 시의회 선거에서...
-
합리적으로 생각하면 아마 26 모집정지는 없을 것 같습니다. 30
물론 개인적인 뇌피셜에 불과하긴한데요의평원은 지금 25 의평원 불인증을 통해...
-
불인증되면 13
퇴학 처리된 전적대에 재입학 가능하냐 진지하다 ㅅㅂ
-
걍 수능접을까 패스값아깝긴한데
-
공대 물리 질문 0
공대 전과 목표로 물리 ebs개념강의 듣고있는데요 개념교재에 있는 문제들 말고 따로...
-
후후오나 0
ㅇㅇ
-
현대시 고전시가 0
현대시랑 고전시가가 많이 약합니다 이 두 파트 잘하시는 선생님 추천 좀 부탁드랴요ㅜㅜ
-
확통 질문 3
재수생입니다 미적에서 확통으로 넘어가는데 고1수학에 경우의 수 순열과 조합쪽 기억...
-
컨설업체는 가장 큰 문제가 지들끼리 정보공유를 안함ㅇㅇ 1
이름보고 드가는건데 ㅇㅇ
근데 도구정리라는 개념은 생각해 볼 필요가 있는 것 같습니다.
문제를 해결할 때 반응하거나 하는 것도
좋지만
근본적으로는
사고의 폭과 깊이. 해석에 초점을 맞춰야 한다고 생각합니다 ㅎ
정말 정확합니다 :)
이전부터 교과서를 강조하시면서 정말 사람 아닌 풀이로 푸시던 분이라......그분이 떠오르는군요...... 물론 그분은 무조건 현학적으로만 푸신다기보단 교과 내용 안에서 최대한의 계산 센스로 간결히 푸시는 분이기에 당시 1컷이 낮은데도 만점에 도전하는 최상위권 학생들에게는 적합했다고 봅니다. 다만 일반적인 학생들이 일관성 있게 풀기에는 다소 무리가 있는 풀이들이 좀 있었죠. 해당 학생층이 많이 제한적이었지 그 방식이 틀렸다고는 저는 보진 않습니다.
틀린방법은 절대로 아니죠 :) 그때 상황을 보면..
승동좌 최근에 해설강의를 들어보면 현학적이기 보다는 교과서기본개념을 가지고 정말로 간결하게 풀어내시는걸 보면 홀홀홀
제가 말씀드린 선생님과 다른것 같습니다.ㅎㅎ 조금 오해가 생길것같아 그 부분은 삭제하였습니다.
이분이 말씀하신분은 sjw인거같네요
1번 매우공감합니다 특정 실전개념(도구) 은 항상 평가원에서 출제한 다음 만들어지는데, 이게 기출문제를 풀때만 도움이되고 다음에 나올 수능 문제에는 적용이 될지안될지는 역시 모르는법이죠 지구과학의 김지혁 선생님이 매우 강조하시는 맥락이네요
뜬금없자만 생1 의 대표적 강사도 기출분석을 통해 후천적 풀이법을 만들죠 그 사람 강의 들으면 유전 기출문제 1분컷 30초컷도 가능한데 과연 수능날 빛을 볼지는 의문..작년 수능은 그래도 쉬워서 다행이지만 올해는 정말 모르겠네요 엄청 고인 거같은데
이때까지 수능에 신유형이 나온적이 생명과학은 드물어서 그런거 아닐까요
수능의 목적을 생각한다면 과목이 달라도 같을 것 같습니다.
안녕하세요 선생님 칼럼 잘 읽고 있습니다!!
언급해주신 181127 이차곡선 문제에 대해 질문 하나 드려도 될까요,,,
현장으로 돌아가보면 저는 문제를 읽고 끄적끄적 하다가 운 좋게(?) 합동을 찾아서 3,4분 이내로 풀었던 기억이 있는데요, 시험을 끝나고 보니까 수학을 굉장히 잘하는 제 친구놈이(서울과학고 졸 19수능 60분 만점) 사실상 그 문제 때문에 수능을 한 번 더 보게 되었고 그만큼 많은 친구들이 고생을 했더라고요.
최근에 기출 분석을 하면서 저 문제를 접했을 때 '이차곡선은 대칭성이 전부 다!!' 라고 강조하시는 선생님들이 많았고 저 또한 '아 맞네 맞네 특히나 저 문제는 y축에 중심이 있으니까 대칭성을 떠올려야지' 라고 생각하고 있었는데 쌤 생각 1번 그리고 제 덧글 윗 분의 덧글을 보면 이게 어떻게 보면 진짜 뒷북이 아닌가,,,, 라는 생각이 듭니다.
저는 나중에 수학선생님이 되는게 꿈인데요, 그래서인지 선생님께서는 181127 문제를 처음 보셨을 때 어떻게 접근했고 또 그 문제를 틀린 학생들에게 어떻게 가르치실지 궁금해서 질문드려봅니다.
감사드립니다!!
안녕하세요 긴 댓글 감사합니다.
저는 기하에서 가장 중요한 것은 '정보의 조직화' 라고 생각합니다. 즉, 있는 조건들을 연결해 조직화 하여 문제를 해결해야 한다고 생각합니다. 공간도형에서 단면화나 정사영 삼수선 정리가 정보를 잘 정리하기위해 사용되는 것 처럼 말이죠 :) 사진에서 보면 지금 내가 가지고 있는정보를 빨간색으로 표시하고 이 정보들을 어떻게 연결할지(삼각형) 생각을 하면 보조선을 그을 수 있습니다. 혹시 더 말씀 나누고싶으시면 언제든지 환영입니다 :)
앞으로도 칼럼 많이 써주세요 헤헤
시행착오에 대해 말을 보태자면, 평소에 문제를 풀 때 시행착오를 많이 겪어보는것이 정말 중요한 것 같아요! 그래야 시험장에서 이상한 짓도 안하면서 안정된 상태에서 풀이를 시도하고 수정해서 답을 만들 수 있는 것 같아요 ㅎㅎ
맞습니다!
14~16때 대치동 수능시장이 그나마 좀 죽었는데
16탐구를 기점으로 17국어와 함께 수학도 화려한 부활을 알렸죠ㅜㅜ
'이 생각을 출제되기 전부터 강조했는지, 아니면 출제된 후에 만든 개념인지 아셔야 합니다.'
이말 진짜 공감..
인강 듣고 평소 모의는 잘보던사람이 수능 무너진케이스 너무많이봄
인강강사의 과거 기출풀이를 귀납적으로 정리한 강의들으면 진짜 높은확률로 수능에서 피봄