양자역학 칼럼_ 기초-이론체계 1
여기서는 양자역학을 이루는 기초체계를 알아보자.
1. 헤르미트 연산자(Hermitian Operator)
함수의 내적은 다음과 같이 정의 된다.
또한 분명히 다음의 성질을 만족할 것이다.
(여기서 *는 헤르미트 켤레를 의미)
이제 파동함수를 도입해 보자. 당연히 어떤 관측가능한 물리량의 평균값은 결정가능할 것이고,
다음과 같이 정의된다.
이는 얼핏보면 매우 간단해 보인다. 하지만 수학적 체계는 그러하지 않다. (결론적으로 물리적 체계는 간단해질 것이다.) 여러분들이 생각한것처럼 우리는 이 연산자의 평균치 만 알 수 있다. 왜?
당연하다. 연산자의 상태 자체를 미결정상태라고 보는것이다. 원래의 파동함수에 아무런 외적 변형을 가하지 않으면, 우리는 물질의 형태, 위치, 운동량 등을 결정 할 수 없다. 결정가능한 경우는 오직 파동함수가 무너졌을 때(The Collapsed Wave function)뿐이다. 아래그림을 보라.
위 그림은 붕괴되지 않은 상태의 파동함수이다. 보이다 시피 어디에서든지 존재할 수 있다. 반면 아래의 붕괴된 파동함수를 보라.
국소적인 경우에만 존재할 수 있다. 위치가 결정된 것이다. 하지만 운동량은 어떤가
파동함수의 기울기가 무한대로 가므로 운동량은 발산 함을 알 수 있다. 즉, 운동량과 위치를 동시에 잡을 수 없다. 이것이 그 유명한 위치-운동량 불확정성의 원리(하이젠베르크 불확정성)이다. 이것을 차근히 증명해 나갈 것이다.
다시 헤르미트 연산자로 돌아와라. 말하고자 하는 바는 결국 측정가능한 물리량은 실수값만을 가진다는 것이다. 즉, 다음과 같이 된다.
우리는 이런 성질을 만족하는 연산자를 헤르미트 연산자라 부른다.
2. 결정된 상태(Determined States)
이태까지 우리는 헤르미트연산자에 대하여 알아 보았다. 분명, 파동함수로는 위치를 비롯한 많은 물리량들이 보장되지는 않는다. 하지만, 유의하라!! 이것이 의미하는 것은 관측에 의한 '섭동'이 이루어 지지지 않으면, 위치/운동량 등의 물리량이 결정되지 않은 상태로 존재한다는 의미이지, 동일한 앙상블의 입자계가 같는 물리량이 변한다는 뜻이 아니다!
즉, 동일한 앙상블의 측정을 반복해서도 물리량들의 고윳값이 바뀌지는 않는다. 이것은 다음과 같이 기술된다.
이 값이 0이 된다. 이러한 상태를 우리는 '결정된 상태에 있다' 라고 하고 정해진 값 q를 고윳값(eigenvalue)라 한다. 그 상태방정식은 위의 식보다 더 간다하게,
라고 나타낸다. 이제 불확정성의 원리를 나타내어 보자.
3. 일반화된 불확정성 원리(The Uncertainty Principle)
앞에서 구했다 시피, 임의의 물리량의 분산은 다음과 같다.
여기서 새로운 함수 f 를 다음과 같이 정의 하자.그러면, 다음과 같은 식이 성립한다.
한편, 복소수의 기본성질을 이용하면 부등식을 더 간단히 할 수 있다.
이 형태의 식은 어쩌면 최종결과에 도달한 것처럼 보인다. 하지만 우리는 더 잘 할 수 있다. 위의 부등식을 연산자 A, B로 나타내보자. 한눈에 보기에 이것은 사태를 더 악화시키는 것처럼 보인다. 하지만 각 항들이 상쇠되어 더 간단해진다. 직접 시도해 보아라.
결론부터 제시하겠다. 다음의 교환자 관계를 가진다.
여기서 []는 교환자를 의미한다. (이 경우, 교환자에 질문이 있는 분은 따로 질문해 주시오)
일반화된 불확정성의 원리: 이제 A, B대신 위치와 운동량을 넣으면 우리가 아는 '위치-운동량 불확정성원리'를 얻는다. 시도해 보라.
여기서 가장 중요한 것은 등호성립조건, 즉, 최소불확정성 상태를 찾아내는 것이다. (최소불확정성을 가질 때, 파동함수는 어떤 형태의 함수를 가지겠는가?)
-맞추신 분에게는 칭찬을 드립니다.
이것으로 양자역학 기초과정 칼럼 1부를 마침니다.
예정
양자역학 칼럼 기초과정 1. 이론체계
2. 기본모델
3. 슈뢰딩거 방정식
중급과정 1. 시간에 무관한 섭동론(Time-Independent Purturbation Theory)
2. WKB 근사법
3. 시간에 관계있는 섭동론
4. 산란이론(Scattering Theory)
고급과정 1. 상대론적 양자역학-디랙의 방정식
-전자의 스핀자기모멘트와 g-factor
2. 제만효과(The Zeemann Effect)
질문은 언제나 환영입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다 틀린새끼 ㅇㄷㄴㅂㅌ ㅋㅋㅋㅋㅋ
-
숙대 가능할까요 0
전에도 한번 글 올렸었는데 숙대 경영학과 가능한지 궁금합니다....!ㅜㅜ 진학사는...
-
[단독]尹-한동훈 "어떤 경우에도 대통령 임기 중단 없다" 1
[파이낸셜뉴스] 윤석열 대통령이 4일 한덕수 국무총리, 한동훈 국민의힘 대표 등과...
-
캬캬캬컄 0
와맆 재밌네
-
ㅈㄱㄴ 본인 6모 미적 3틀 81, 9모 미적 2틀 92, 수능 미적2틀 80인데...
-
어제 집에서 자려다가 엄마가 불러서 가짜뉴스겠거니 하고 그만보라고하고 다시 누워보니...
-
현역 재수 3수 4수 끼리 등급 내면 된다 계엄령을 내려서라도 이렇게 해야 수능...
-
히히 넘 좋다 평화가 이리 귀할 줄이야
-
쫄린다... 2
앞으로 건전한 뻘글만 쓰도록 하겠습니다
-
정법 47도 1 가능이겠죠? 제발
-
봐도봐도 웃기네 7
나도 한손으로 저렇게는 못 넘을거 같은데 ㅋㅋㅋ
-
혹시 담임쌤이 평가원 관계자이신가요?
-
동생이 내년에 고3이라 일단 2학년 1학기까지 성적 돌랴봤는데 특성화고전형으로...
-
[속보] 尹 "민주당 폭주 국민에 알리려 비상계엄 선포" 3
윤석열 대통령이 4일 "민주당의 폭주를 국민에게 알리기 위해 비상계엄을 선포했다"고...
-
지하철에 엉따 시스템이 마련돼있네.. 개따뜻해
-
배경화면 ㅇㅈ 14
어때?
-
엄마 갑자기 방에 침입해서 급하게 야동틈 휴;;
-
좋아하는 것만 뭉탱이로 많고 정작 진로 갈피를 못잡겟네
-
라고 말하고 구라인거 안밝히면 나 하나로 인해 생명 1컷 44찌라시 도는거냐?...
-
떠나지마 구질구질하게 붙을꺼에요
-
사회과학대학 줄여서 사과대 ㅈㅅ
-
하 진짜 울고싶다 진짜로 하
-
우리학교 06이 올해 2.1로 숭실대 공대 종합 떨어졌다는데 2.5 국숭세단 불가능한가요?
-
한번에 잘 넘으시네 심지어 한손으로 촬영까지 하면서 ㄷㄷ
-
한국사 노베 2
진짜 한국사 한국에서 젤 못한다 할 정도로 쌩노베인데 몇월달부터 시작하는게...
-
말실수로 어디 좌표라도 찍혔나
-
D-344 공부 1
-
반배정 질문 5
제가 물생지를 했는데 만약에 전교에 물생지가 30명이다 / 남자 25 여자 5 이다...
-
친구가 없어서 7
25시간 오르비에 상주중
-
내일이면 과탐이 나오고 국수도 대강은 나오고 표점이 나오고 후후후.... 금요일이...
-
"악을 처단하리" 요런거만 봤는데 이걸 현실에서 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 체포도...
-
활동량인 건 알겠는데 위에 작은 숫자는 뭐에요?
-
일본식 오뎅인듯
-
귀 안좋아질까봐 평소에 3칸, 4칸정도로 듣다가 6칸으로 키우니까 신세계를 경험함
-
불렛할사람 5
나 1번이라도 이기면 5만덕
-
의반 표본때문에 역대급 컷이 나올것이다..... 내 주변 수능 친 애들 전부...
-
이게머지ㅋㅋ
-
수학 omr 4
수능 수학 omr카드 마킹할 때 객관식 마킹이 두 줄(?)이잖아요 혹시 두 번 째...
-
피곤하도다
-
올해 수시 입학취소+정시 모집정지면 내년 표본 역대급 찍는 거고내년 모집정지면...
-
으으윽 처단할끄야 으아악! 이런 느낌이라 뭔가 웃김. 아니 사실 안웃김. 아무리...
-
캬ㅋㅋㅋ역시 대윤카
-
하 진짜 ㅋㅋ 자려던 참이었는데..갑자기 선임분이 뉴스 틀더니 대통령이 계엄령...
-
정석이 수능에는 도움 크게 안된다는 의견이 많더라구요 한완수를 보거나 뉴런이나...
-
뻥임뇨 사실 가능성 있음뇨
-
기릿~
-
사실설탕 물이긴한데 맛있음
-
먹어버렷어 1
-
공대가면 이거 다시 배우나욤?
-
무물보 14
지금 치킨먹는중
그림은 Introduction to Quantum Mechanics, 2ed, David . J. Griffiths
수식은 LaTeX로 작성함
전공 물리쪽인데 하나도 못 알아먹겠당
양자가 3학년 편성이라 그런듯 싶습니다
과고라서 물올 겨울학교하면서 알게됐죠
ㅋㅋ 별거 아니지만 좋게 봐주셔서 감사해요
문제2 제가 제시한 일반화된 불확정원리는 자명한 식일까요 아닐까요?
글제목 양지역학이에요
variational method랑 Ads/CFT도 있나요
학부과정만 한거라 나머지는 잘 모르겠습니다.
글쓴이님 goat 이시네요 ㄷㄷ;;
더 관심 있으신 분들은 여기를 참조하시면 됩니다.
https://horizon.kias.re.kr/archives/allarticles/naturalsciences/%eb%af%bf%ea%b8%b0-%ed%9e%98%eb%93%a0-%ec%96%91%ec%9e%90-incredible-quantum/
과학, 수학 등 다른 과목 관련 칼럼은 여기를 참조하시면 됩니다.
https://horizon.kias.re.kr/
카이스트 재학생입니다(인증가능합니다)
혹시 일본 대학 문제들은 직접 번역하시는건가요?
네 . 다만,바로번역하지 않고 조금더 스무스한 해석을 위해 제가먼저 풀어본 후 해석을 답니다.