[동수형] 3월 학력평가 후기와 가형 14번 문항의 정답을 2번으로의 선택이 41%인 이유...
안녕하세요 수학강사동수형입니다.오늘은 다름이 아니라 어제 시행되었던3월 학력평가의 종합적인 이야기와14번 문항에 대한 이야기를 하고자 합니다.먼저 어제 등급컷을 보니 완전히.....이과1등급84, 2등급75, 3등급66문과1등급84, 2등급72, 3등급55....아직 많은 수험생들이 준비가 미흡하다는 것은 인지합니다.하지만 몇 문항을 제외하고는 그럭저럭 풀만한 문항이었습니다.일단 최고난이도 문항이 아니라 기본적인 문항은 확실히 하자는 것이 저의 소견입니다.일단 어제 학력평가는 시동을 거는 것이니아...이렇구나는 확실히 알고 앞으로를 준비하시면 되겠습니다.이제 가형14번 문항에 대한 이야기를 하겠습니다.이 문항에서 왜 오답률이 높으며(객관식 중 최고)왜2번을 선택하였는지...일단2번을 선택한 수험생들은 연속의 개념을 생각하고 있었기 때문입니다. (2번 선택41%)에서 아... 이겠구나....이렇게 생각하신다음 이차방정식 근과 계수와의 관계에서 모든값의 합은네 라고 했을 것입니다.일단 극값의 개념을 잘못 정리가 된 것입니다.극값의 개념은-함수의 극대극소함수에서를 포함하는 어떤 열린 구간에 속하는 모든에 대하여(1)일 때,함수는에서극대라 하고,를 극댓값이라 한다.(2)일 때,함수는에서 극소라 하고,를 극솟값이라 한다.이때,극댓값과 극솟값을 통틀어 극값이라 한다.입니다.여기서 연속이라는 것은 없습니다.이런식으로 극대가 된다는 것입니다.따라서 꼭 연속일 필요는 없다는 것에서 많은 분들이 생각을 잘못 하신 것 같습니다.이번 제가3월 동수형 모의고사에14번 문항으로 출제했던 것에 대한 해설 강의만 참고하셨더라도 이런 오해는 없었을 것이라고 생각합니다.도움이 되셨던 분들도 있었을 것이라고 생각합니다.조만간에 올라 올3월 모의고사 해설강의에서는14번 문항을 다른 각도로 풀었으니 참고해 주시고...4월 동수형 모의고사에서 다시 만나도록 하겠습니다.앞으로도 많은 도움이 되도록 수험생 여러분을 찾아가 뵙도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
초딩 때: 영유뽕으로 ㄹㅇ 하버드 갈줄 중딩 때: 그래도 전교 1등인데 서울대 갈줄...
-
걍 고딩때 잘하는 놈이 이기는듯
-
메타 틈 타서 10
맞팔구
-
19수능 국어 1컷 22수능 국어 2등급인데?
-
IQ ㄱㅁ 5
초4때 미국 초등학교에서 IQ테스트했는데 142떠서 엘리트반으로 감
-
내 주변 친구들 5
애매하게 친한 친구들은 다 ㅈㄴ 잘나가는데 찐친들은 다 ㅈ박음
-
인생 최대업적
-
저진짜수학못해먹겠 슨!!!!!!!!!! 하… 2등급이라도 받고싶다 정말
-
당연한소리지만 진짜 쩌는거같은데.. 테스트나 스펙 빡센가요? 다 메디컬이신가..
-
그거 아시나요? 4
옃집천사 2기가 나온데요
-
두번말안한다
-
ebs같은건 대비 어케해줌? 걍 인강보게 시킴?
-
니들도 오르비 끄고 공부해라
-
나보다 ㅈ박은 애를 못봄 ㅋㅋㅋ 갑자기 고등학교때 타락해버림 원래 한국대학...
-
9할이 웩슬러 130은 될거같은느낌임 비틱그만좀;;
-
사실 고능아가 아니라 고등어입니다 군돌이 4개월남았습니다 근데그거말고가진게없습니다
-
국어 인강이 볼륨도 크고 시간 잡아먹을것 같아서 독학 고민중인데
-
22수능 기하 다맞 23수능 기백
-
약수라인에서요
-
샤브샤브 먹구 0
컬리프라이 머거야쥥
-
ㄹㅇ
-
3모전까지만 5시간 어떤가요??
-
제발 자꾸 살자충동 오게하지마라...
-
으응...
-
순서는 3모 5모 6모 7모 9모 10모 수능 물1 38 45 45 50 50 47...
-
슬퍼요
-
육칼 5
냠
-
겁나 크다고 느껴짐... 뭔가 확실히 일본인하고 체격이 달라
-
152
-
기만메타머임 8
ㅌㅌ
-
중 2 서울과고 1차합 (2차안감) 중 3 경기과고 1차합 (2차안감) 일반고 가서...
-
홍대병에 걸려서 취향이 특이해진건지 진짜 모르겠네 민트초코 슈붕 부먹이 좋아
-
64 80 84 92 92 96
-
96 98 100 89 89점 때 표점이 제일 높았던... 140이었음 ㅋㅋㅋㅋㅋㅋ...
-
메타참전불가 5
고능아가 아니라서 ㅌㅌ
-
고3때 친구 2
담임이 열심히 하면 서연고까지 ㄱㄴ하겠다 했는데 6 9 영어빼고...
-
생윤 코드원 0
이거 써본 사람있음? 내용은 좋은데 가독성이 구리다는 평이 많아서 궁금
-
전교에 수학 100점이 3명밖에 없었는데 그 중 한명이 저였음
-
재수 수능에서 더 떨어짐
-
25의대생이 가장 두려워하는건 의평원 불인증이 아니라 26의대증원 유지겠지요 0
사실응 26의대 모집정지를 누구보다 반기실 분들이 25의대생들임
-
저는 슈팅스타였는데 바함사를 자주 먹다 보니 바함사가 됐어요
-
진짜 중위권인데 했어서 오르비 실모 성적 올리는 분들 보고 박탈감 항상 느꼈었음;
-
같이먹을분
-
극내향인이라 울엇어.. 내년에 조교 지원할랬는데 ㅠㅠ
-
구치소부터 콩밥주는줄 알았는데 집밥보다 호화스럽게 먹노
-
내일 군대가는데 55
메인 한번 보내주라 하
-
넘 졸려요
-
고3 3모 백분위 94 6모 5등급 아. 국어 수직낙하
저것도 극대로 치나요 ㅠ
네 극대입니다..
제 모의고사 가형 14번에 설명해뒀으니 참고하세요
2번이 선지 선택 비율이 높은 이유는 사실 모든 a값의 '합'을 구한 학생이 대부분이라는 소름돋는
뭐... 확실한 것은 아닙니다만. 아마도 그렇지 않았을까 라는 생각을 합니다.
저도 어제 풀땐 그냥 -3, 1이구나 했는데 오늘 해설강의 할때 아... 이렇게 하니 답이 -2네..라는 생각이 들어서요...
아..이제 잘못된거 봤습니다
합이 아니라 곱인데...글 실수입니다
동수형 모의고사 풀고 극대 정의 정확히 알게 되서 수학 100점 맞았습니다. 감사해요
와우. 잘됐네요.. 앞으로도 좋은결과 있기를 바랄게요
?!놀라서 교과서를 찾아보니 극값은 연속인 부분에서만 정의된다고 나와 있는데요...과외할때도 그렇게 가르쳤고요
? 극대 정의에 연속성이 전제 되어잇다고요? 지금까지 과외생에게 오개념을 주입하셨었군요
무슨 말씀이세요?교과서에도 그렇게 명시 되어 있는데...
혹시 교육과정이 바뀐건가 싶어서 보니 새로 나온 개념원리에도 연속일 때라고 명시 돼 있습니다
교과서 서술을 오역하신 것 같습니다.
어떤 점이 1사분면 위에 있을 때 그 점의 y좌표는 양수이다 라는 발문을 읽으실 때 y좌표가 양수인 조건을 1사분면이라고 해석하시는지요?
어떤 점이 1사분면 위에 있을 때 그 점의 y좌표는 양수이다 라는 발문을 읽으실 때 y좌표가 양수인 조건을 1사분면이라고 해석하시는지요?
아니요. 역이 성립하지는 않으니까요.
교과서와 개념원리에선 명백히 '극값'의 정의를 설명하면서 '연속성'이 내재돼야 한다고 명시 돼 있으니까요
개정판 개념원리입니다
흔히 극댓값이라 부르는 로컬맥시멈을 정의할 때 과거 교육과정에서 실제 정의와의 괴리때문에 이번에 다시 미적분학의 정의로 정정한 것입니다. 애초에 수학에서 극값을 연속이 전제된 상태에서 정의한 적이 없습니다. 시간이 조금만 있으시면 네이버에라도 극값의 정의를 치셔서 살펴보세요. 전 수학과 학부 전공입니다. 댓글이 자꾸 길어지니 본인께서 조금만 찾아보길 권합니다.
개념원리가 상당히 오개념 투성이군요 교육과정상에서 증가상태 감소상태라는 용어 또한 없습니다. 그리고 극대를 정의할때 증가하다가 감소하는 부분이라뇨... y=1이라는 상수함수는 모든 점에서 극대이자 극소입니다. 개념원리의 서술에 따르면 상수함수는 극값이 없네요?;; 어느나라 수학인가요
개정전의 문제집에는 상수함수는 극대도 극소도 아니다.
라고 서술되어있는 책들도 많았습니다.
이제라도 제대로 가고 있는것 같습니다~
상수함수에 극대와 극소가 있나요..?
네 원래 로컬 맥시멈은 국한된 범위에서 다른값 이상의 점을 말합니다.
아..QbnW.....님 개정판 그거 수정 안된 책입니다..
올해 나온거로 서점에서 다시 보시거나 구입해서 다시 보세요 그럼 이해가 되실겁니다
찾아보니 교육과정이 개정되면서 극값의 정의가 바뀌었는데 개념원리가 그걸 반영 안 한 거네요. 매우 당황스럽군요
실제 수학에서는 지금 개정된 정의대로 지금껏 약속해왔기에 알아두시면 좋을 것 같습니다.
개념원리 하고요, 천재교과서중 [류희찬대표저자] 인 책에서
개정전의 극대/극소 정의를 답습하네요.
저도 오늘 천재교과서가 그렇다는 제보를 받고 알았습니다.
같은 천재교과서라도 [이준열대표저자]인 책은 개정교과서에서 채택하고있는
극대극소의 정의를 서술하고 있는데 말이죠.
이 부분은 조속히 수정되어야 할 것 같습니다.
극대/극소 조건 다 무시하고
f(0) = f(2) 의 a에 대한 2차 방정식의 합(= -2) 을 구해서 2번으로 오답 한 학생이 41프로 라구요? ㄷㄷ
설마요... 그런 학생들 거의 없을것 같은데요..
그냥 저의 개인적인 생각입니다.. (곱으로 바뀌야하는데 합으로 되어있네요 )아니면 2번을 41퍼나 나올일이 없으니깐요
그리고 연속의 개념을 가지고있는 학생이라면 그랬을 가능성이 높다는 이야기입니다
저는 그냥 1 / -3 을 곱하지 않고 더한 실수를 한 친구들이 많아서 2번 오답률이 높았지 싶네요.. 극대 극소 무시하고 풀었을리가...
제 첫 댓글이
그거임 더하면 -2나옴 ㅋㅋ 많이 낚인 듯
2번이 41퍼라니... 그런 이유일 가능성이 상당히 있다고 봅니다.
혹시 14번 정답률 아세요?
정답은 1번으로 14퍼 정도로 알고 있습니다
전 더하기 실수로 정답과 3배정도로 정답률이 달라질리가 없기에 그리고 객관식이 정답률이 20 퍼가 안되기에 이런 논리로 이야기하는겁니다
그냥 저의생각입니다
저가 고2라 댕청해서 그런데 f(x) = f(x+2) 면 2인 주기함수 아닌가용 그냥 물어보는거에요 저가 잘못생각한건가 싶어섴
주기가 2인것은 아닙니다
하지만 문제 풀때 구간이 2로 주어져있기때문에 주기를 2라고해도 상관은 크게 없습니다
2마다 반복이라 생각하시면 됩니다